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We consider two driven cavities �capacitors� connected in series via an edge state. The cavities are driven
such that they emit an electron and a hole in each cycle. Depending on the phase lag the second cavity can
effectively absorb the carriers emitted by the first cavity and nullify the total current or the setup can be made
to work as a two-particle emitter. We examine the precision with which the current can be nullified and with
which the second cavity effectively counts the particles emitted by the first one. To achieve single-particle
detection we examine pulsed cavities.
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I. INTRODUCTION

The dynamics of a quantum coherent capacitor connected
via a single contact to an electron reservoir have attracted
experimental and theoretical interest. A capacitor connected
via a quantum point contact �QPC� to an edge state shows
mesoscopic capacitance oscillations and a quantized charge
relaxation resistance.1–5 In addition a recent experiment dem-
onstrated an “electron gun” emitting and absorbing a single
electron in every oscillation cycle.6 The emission process7–9

injects an electron into states above the Fermi level, whereas
absorption of an electron leaves a hole below the Fermi en-
ergy. The invention of lasers revolutionized optics. Similarly,
single-electron injectors either using capacitors or quantized
electron pumps10–14 provide novel coherent sources for elec-
tronics.

It is a challenging task to detect the electrons with the
speed they were emitted with. In modern experiments the
dynamics of single-electron transport through a mesoscopic
system is often explored experimentally using as a charge
detector, either a radio-frequency single-electron
transistor15–17 or a QPC.18–21 However the speed of these
detectors is not sufficient to detect electrons with a nanosec-
ond resolution. To circumvent this problem, we propose as a
fast detector a device which is analogous to the emitter: a
quantum capacitor, such as used in Refs. 2 and 6. Such a
detector is able to register particles as fast as an emitter can
inject them into the quantum circuit. We therefore consider a
system consisting of two quantum cavities coupled in series
by a single edge state and modulated by in general different
periodically varying potentials, both with frequency �, as
shown in Fig. 1.

The charge emitted by the first cavity is detected by nul-
lifying the total current with the use of the modulation of the
second cavity. Namely, the potential U2�t� can be chosen in
such a way that the total current vanishes. In general the
current I�t� consists of a series of pulses corresponding to
electrons and holes emitted by either of the cavities. How-
ever if the time when an electron was emitted by the first
cavity coincides with the time when a hole was emitted by
the second cavity the total current I�t� is suppressed. This
electron-hole annihilation process can be viewed as the reab-
sorption by the second cavity of an electron emitted by the

first cavity and it can be used to count electrons. If the count-
ing efficiency is perfect the total current vanishes
completely.22

Since the capacitor system generates an ac current it is
convenient to investigate the degree of the current suppres-
sion by studying the square of the current integrated over one
period 2� /�,

�I2� = �
0

2�/�

dtI2�t� . �1�

Note that �I�t�2� is different from the noise �see Refs. 7–9�.
We develop the conditions for nullifying the total current and
investigate the measuring precision. Alternatively, being
driven in phase such a double-capacitor system can serve as
a two-electron �two-hole� emitter.

II. MODEL AND FORMALISM

The system consists of two cavities with edge states of
circumference L1 and L2 connected via QPCs with the reflec-
tion �transmission� amplitudes r1 �t1� and r2 �t2� to an edge
state of length d and modulated by time-dependent potentials
U1�t� and U2�t�, respectively. A particle with energy E enter-
ing the cavity j picks up a phase kLj, which is the kinetic
phase of the guiding center motion.23 The time � j that a par-
ticle spends for one revolution in the cavity j is related to the
cavity’s level spacing, � j =h /� j. Due to the time-dependent
potential Uj�t� an additional time-dependent phase � j

q�t�
= e

��t−q�j

t dt�Uj�t�� is accumulated in the cavity during q revo-

U1(t) U2(t)

L1
L2

I(t)

d

FIG. 1. �Color online� Two driven cavities �mesoscopic capaci-
tors�, formed with quantum point contacts, are coupled in series by
an edge state. Time-dependent potentials U1�t� and U2�t� act homo-
geneously on the regions of the two cavities.
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lutions. The separate cavities can be described by a time-
dependent scattering matrix for a particle with incoming en-
ergy E, leaving the system at time t, given by the Fabry-
Pérot-type expression,

Sj�E,t� = rj + tj
2�

q=1

�

rj
q−1eiqkLj−i�j

q�t�. �2�

With the time �d which the particle spends in the connecting
edge state, the scattering matrix of the full system is

Stot�t,E� = �
p,q=0

�

��r2
��−1	p0 + t2

2r2
p−1eipkL2−i�2

p�t��


��r1
��−1	q0 + t1

2r1
q−1eiqkL1−i�1

q�t−�d−p�2��eikd. �3�

A Floquet scattering matrix approach,7–9 used to deal with
quantum pumping,24–29 enables us to investigate the dynam-
ics of the system beyond the linear-response regime and
adiabatic approximations. The full time-dependent current
response to a periodic modulation with frequency � is

I�t� =
e

h
� dE �

n=−�

�

�f�E� − f�E + �n��	



�

2�
�

0

2�/�

dt�ein��t−t��Stot
� �t�,E�Stot�t,E� . �4�

In the following we analyze the conditions to achieve effi-
cient particle counting in the double-capacitor system by nul-
lifying the total current and discuss the precision.

III. RESULTS

Inserting the total scattering matrix, given in Eq. �3� into
the current formula of Eq. �4�, we obtain a general result for
the total current due to a harmonic modulation of the system.
We first investigate the adiabatic regime, specifying results at
zero and at high temperatures. Subsequently corrections to
the adiabatic results and the strongly nonadiabatic limit are
considered.

A. Adiabatic response

In the following we calculate the current response to two

potentials Uj�t�= Ūj +	Uj�t�. In the adiabatic limit, �→0,
where the time scale set by the modulation is much larger
than the time particles spend in the cavities and the connect-
ing edge state, we expand Eq. �4� in first order �. The cur-
rent I�1��t� is related to the instantaneous densities of states
� j =� j�t ,E�= 1

2�i Sj
�(E−eUj�t�)

�Sj(E−eUj�t�)
�E of the two cavities,

I�1��t� = e2� dE�− f��E�	
�1
�U1�t�

�t
+ �2

�U2�t�
�t

� . �5�

With the transmission Tj = �tj�2 the density of states is

� j�t,E� =
1

� j

Tj

2 − Tj − 21 − Tjcos � j�E,t�
. �6�

The phase � j�E , t� can be written as the sum of a time-
dependent and a time-independent contribution,

� j�E,t� ¬ − 2�e	Uj�t�/� j + 2� j�E� , �7�

with 2� j�E�=
� j

� �E−��+k���Lj −2�eŪj /� j +� j
r. The phase

of the respective QPC’s reflection coefficient is given by � j
r,

with rj = �rj�exp�i� j
r�. The detuning  j� j defines the position

of the quantum level in the cavity j with respect to the Fermi
level � at zero driving amplitude, 	Uj�t�=0. Thus to lowest
order in frequency the current consists of a sum of separate
contributions of the two cavities. This means that the total
time-dependent current can be nullified whenever the phase
difference 	2−	1 of the two harmonic modulations is equal
to � and when the amplitudes together with the cavity pa-
rameters are adjusted in an appropriate way. We now choose
a harmonic time dependence, 	Uj�t�=Uj cos��t+	 j�, with
Uj �0.

B. Current nullification at kBT=0

In Fig. 2 we plot the time integral of the squared current
�Eq. �5�	 as a function of the phase difference of the poten-
tials given for different choices of detuning 1�1, 2�2 and
for different values for eU2 /�2. To understand these plots,
we consider the limit of very low transmission at the QPCs,
Tj �1. Then the instantaneous density of states �Eq. �6�	 of
the cavities takes the form of a sum of Breit-Wigner reso-
nances, around the zeros of the quantity � j�E , t�—defined in
Eq. �7�—to be taken mod 2�. We take the modulation am-
plitude Uj to be smaller than half the level spacing � j and
larger than the detuning  j� j, such that one electron and one
hole are emitted per cycle. We consider particles with ener-
gies equal to the Fermi energy.

When periodically driving the potentials Uj�t�, the densi-
ties of states have a peak at the Fermi energy around reso-
nance times tj

+ and tj
−. To lowest order �, the current pulse

generated �Eq. �5�	 is expressed in terms of the resonance
times, tj

�, and the half-widths of the pulses, wj,

�tj
� = − 	 j � arccos� j� j

eUj
� , �8a�

�wj =
1

2�

Tj� j

2eUj

1 − � j� j

eUj
�2�−1/2

. �8b�

We are interested in a situation where during the driving
process an electron and a hole are fully emitted, separately
from each other, and therefore the distance between the reso-
nance times tj

� is much larger than the width of the current
pulse, �tj

+− tj
−��wj. We find

��I�1��2� =
e2

�

 1

w1
+

1

w2
� +

2e2

�
�L�t1

+ − t2
+� + L�t1

− − t2
−�

− L�t1
+ − t2

−� − L�t1
− − t2

+�	 , �9�

where we introduce the Lorentzian L�X�= �w1+w2� / �X2

+ �w1+w2�2	. Its arguments �t1
�− t2

�� are taken mod 2� in the
interval �−� /� ,� /�	. The four Lorentzians contribute only
if the respective resonance times are close to each other com-
pared to the width of the current pulse. If the first two
Lorentzians contribute, two particles are emitted by the sys-
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tem at the same time either two electrons or two holes and
��I�1��2� is maximized. We are instead interested in the situa-
tion where both of the last two terms contribute, meaning
that one cavity emits a hole approximately at the same time
as the other emits an electron and vice versa. The conditions
for nullifying the current exactly are

	1 − 	2 = � , �10a�

1/T1 = − 2/T2, �10b�

eU1/�T1�1� = eU2/�T2�2� . �10c�

Experimentally these conditions can be obtained by tuning
the phase  j, the amplitude of the time-dependent part, and
the phase difference of the potentials. Close to these condi-
tions, ��I�1��2� as a function of the phase difference has a
pronounced dip,

��I�1��2� =
2e2

w�

�	1 − 	2 − ��2

�	1 − 	2 − ��2 + 4w2�2 , �11�

where �	1−	2−�� is taken mod 2� on the interval �−� ,�	.
In Fig. 2�a� we show ��I�1��2� as a function of 	1−	2 at finite
transmission probability of the QPCs for

eU1

T1�1
=

eU2

T2�2
. When-

ever the maximum is at 	1−	2=0, both the two electrons and
the two holes are emitted at the same time �solid and dashed-
dotted curves, respectively�. Whenever the minimum is at
	1−	2=�, any emitted electrons are annihilated by holes at
the same time �solid and dashed lines�. If the current pulses
of an electron of one cavity and a hole of the other are both
coinciding but the widths of the pulses are different, the dis-
tance of the minimum of ��I�1��2� from zero is

��I�1��2� =
e2

�

�w1 − w2�2

w1w2�w1 + w2�
, �12�

showing a smooth dependence on the system parameters. It
guarantees the robustness of the dip against small deviations
from the ideal conditions. This minimum for the more gen-
eral case of Eq. �5� is shown in Fig. 2�b�.

C. High temperatures, kBTš�j

In this regime the quantized emission is destroyed. How-
ever the current nullification can still be achieved and, e.g.,
be used to tune the parameters of the cavities. At high tem-
peratures we use � j =1 /� j in Eq. �5�. Then from Eq. �1� we
find that the time integral of the square of the low-frequency
current takes a particularly simple form,

��I�1��2�
�e2�

= e2�U1
2

�1
2 + 2

U1U2

�1�2
cos�	1 − 	2� +

U2
2

�2
2� . �13�

It shows a cosinelike behavior as a function of the phase
difference, in contrast to the zero-temperature result, where
the width of the dips �peaks� is determined by wj. Indepen-
dently of the detuning of the two cavities and the transmis-
sion of the QPCs, ��I�1��2� is exactly zero when eU1 /�1
=eU2 /�2 and 	1−	2=� and deviates from zero at 	1−	2
=� by �e2��eU1 /�1−eU2 /�2�2.

D. Correction to the adiabatic response

The response in second order in frequency

I�2��t� = −
e2h

2
� dE�− f��E�	

�

�t

�2

2�U2�t�
�t

+
�U1�t�

�t
��1

2 + 2�1�2 + 2�1�d�� , �14�

contains mixed terms in the densities of states of the cavities
and the connecting channel, �d=�d�E�, as well. Comprising
information about the entire system, it can lead to nonvan-
ishing contributions in the regime where the adiabatic cur-
rent response vanishes. It is interesting to consider correc-
tions in higher order � �Eq. �14�	, which when ��I�1��2�
vanishes are dominant. Independently of the temperature re-
gime, the correction to �I2� in second order in �, for the
parameters where ��I�1��2� in first order in � vanishes, is
always zero. The leading term in � of �I2� is then at least of
third power in �.
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FIG. 2. �Color online� Zero-temperature limit of the averaged square current ��I�1��2� from Eq. �5� as a function of the phase difference
of the modulation potentials. The ratio between modulation amplitude and the level spacing of the first cavity is given by eU1 /�1=0.5. The
transmission probabilities of the QPCs of the two cavities are T1=T2=0.4. �a� Different detuning and eU2 /�2=0.5=eU1 /�1. �b� Fixed
detuning 1=0.1=−2 and different values of eU2 /�2.
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At zero temperature and small QPC transmission under
the conditions given in Eq. �10� we find that �I2����I�2��2� is
of the order ��I�2��2���e2 /w���1 /Tw�2, where �1 /T is the
dwell time for an electron in the first cavity. In comparison,
the contribution stemming from the first order in frequency
current away from resonance is ��I�1��2��e2 /w �see Eq. �9�	.
We find that in the nonlinear regime the adiabaticity condi-
tion is I�2� / I�1���� /T2�1, which differs strongly from the
one in linear response, �� /T�1.

At high temperature and at the parameters nullifying Eq.
�13�, ��I�2��2� is in general not zero and it depends addition-
ally on the transmission of the QPCs and the inverse of the
density of states of the connecting edge state, �d. However,
in contrast to the low-temperature regime ��I�2��2� can be
nullified by introducing further transmission-dependent con-
ditions. These conditions are directly obtained from Eq. �14�
and read for cavities of unequal lengths,

2−T1

2T1
+

�1

�d
−

3T2−2
2T2

�1

�2

=0.

E. Nonadiabatic step-potential modulation

In an experimental setup, instead of by a sinusoidal modu-
lation, the system is often driven by a square-pulse potential,
where a treatment in the highly nonadiabatic regime is re-
quired. For the following analysis we start from Eqs. �3� and
�4� and limit ourselves to the high-temperature regime. We
are interested in a step potential which is the limit of a peri-
odic square-pulse modulation with infinitely long period. In
principle, the potential at the two cavities can have different
amplitudes and can be switched on at different times t1

0 and
t2
0, with t2

0= t1
0+�d+�t0, the sum of the switching time of the

first cavity t1
0, the time a particle needs to pass through the

connecting edge state �d, and a time delay �t0, where here
we choose �t0=0. The step potentials at the two cavities read
Uj�t�=Uj if t� tj

0 and 0 otherwise. The cavities’ response to
the potentials decays with a characteristic time given by the
bigger value of ��1 / ln�1 /R1� ,�2 / ln�1 /R2��. After a waiting
time which is much bigger than the decay time, the charge
emitted by the system equals the sum of the charges that
would be emitted by two completely independent cavities
and is given by Q=e

eU1

�1
+e

eU2

�2
. While this charge is nullified

for
eU1

�1
=−

eU2

�2
, the nullifying of the integral of the squared

current can in general not be reached, meaning that an ac
current is generated.

To find some simple analytical results, let us restrict our-
selves to the limit of identical �r1=r2 and L1=L2� weakly
coupled cavities �T1=T2=T→0� and consider the interesting
case where the total charge is nullified and �I2� is suppressed,
i.e., U1=−U2�U. For a single cavity as well as for the
double-cavity system we find the time integral over the
squared current to be of the form

�I2� =
e2

h

�eU�2

�
F�T,U� . �15�

The function F for a system with a single cavity is given by
Fsingle=T /2. For the double-cavity system with equal
lengths, F�T ,U� oscillates in the potential difference with a
phase �=2�e�U1−U2� /�=4�eU /�. We find Fdouble
=T3 / �2−2 cos���	 if ��2n�, Fdouble=T3 /2 if �= �2n+1��,
and Fdouble=T /4 if �=2n�. The time integral of the squared
current is of the same order for the system of a single and a
double cavity, showing that the coupling between the two
cavities is important in the highly nonadiabatic regime. This
is indicated already in Eq. �14�, where in second order �
mixed terms in the densities of states of the two cavities
appear.

IV. CONCLUSIONS

We investigated the ac current response of a two-particle
emitter consisting of a double-cavity system and propose it
as an efficient tool for counting electrons emitted at high
speed. The square of the total current integrated over one
period shows a pronounced dip when the two cavities are
synchronized. We extract the conditions for perfect counting
by complete current nullification and show that in the adia-
batic regime the counting efficiency is maintained at small
deviations from the obtained conditions. In the highly nona-
diabatic regime, current nullification can in general not be
obtained. However, in principle, pulsed cavities can be used
to analyze single events.
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